Repetition
- Computers are great at doing things repeatedly
- We’ve learned to use functions to find mass for one volume
est_mass <- function(volume){
mass <- 2.65 * volume^0.9
return(mass)
}
est_mass(1.6)
- Easy to find mass for other volumes
est_mass(5.6)
est_mass(3.1)
- But, this is tedious, error-prone, and impossible for large n
- Multiple ways to do something repeatedly in R
- Vectorize
- Apply/Map
- dplyr + functions
- Loop
Vectorize
- Write functions that take a vector of values, do elementwise calculations, and return a vector of the results
- Any function that only uses calculations that are vectorized
- E.g., vector math
- Our current function already works on a vector
est_mass <- function(volume){
mass <- 2.65 * volume ^ 0.9
return(mass)
}
volumes = c(1.6, 5.6, 3.1)
est_mass(volumes)
- Many functions in R are vectorized
library(stringr)
str_to_upper("tree")
plant_types <- c("tree", "grass", "tree")
str_to_upper(plant_types)
- Work on vectors or lists (sometimes columns of data frames)
plant_data <- data.frame(volumes, plant_types)
str_to_upper(plant_data["plant_types"])
str_to_upper(plant_data$plant_types)
plant_data$veg_type_upper = toupper(plant_data$plant_types)
Apply/Map functions
- Use
apply()
andmap()
functions - Take a function
- Apply it to each item in a list of items
- Return a list of the same size
- Doesn’t require calculations to work on vectors
sapply & lapply
- Work on a single vector or list
sapply(X = volumes, FUN = est_mass)
- Same as
c(est_mass(volumes[1]), est_mass(volumes[2]), est_mass(volumes[3]))
-
Do same action on many things with single line of code
- The
s
insapply
stands for “simplify” - It will try to return the simplest object possible, in this case a vector
lapply
returns a “list”
lapply(X = volumes, FUN = est_mass)
Other apply functions
- Handful of similar functions in
apply()
family -
Differ depending on type of input and output data
apply()
works on multi-dimensional data- Set
MARGIN
to tell it which dimension to calculate along 1
for rows2
for columns
counts = data.frame(sp1 = c(5, 4, 7, 6), sp2 = c(6, 2, 6, 9), sp3 = c(8, 16, 1, 0))
counts
apply(X = counts, MARGIN = 1, FUN = sum)
apply(X = counts, MARGIN = 2, FUN = sum)
mapply()
for functions with multiple arguments- Vegetation type specific equations
est_mass_type <- function(volume, veg_type){
if (veg_type == "tree"){
mass <- 2.65 * volume^0.9
} else {
mass <- NA
}
return(mass)
}
est_mass_type(1.6, "tree")
est_mass_type(volumes, plant_types) # Warning & wrong result
- Doesn’t vectorize, due to conditionals
- Use an
apply
function instead mapply()
because “multiple” inputs
mapply(FUN = est_mass_type, volume = volumes, veg_type = plant_types)
- First argument is function
- All other arguments are named arguments for the function
map
functions frompurrr
package are similar to apply
Integrating with dplyr
- Remember our data frame
plant_data
- Directly use vectorized functions with
mutate
mutate(plant_data, masses = est_mass(volumes))
- Use apply functions and add the results as a new column
masses = mapply(est_mass_type,
volume = plant_data$volumes,
veg_type = plant_data$plant_types)
plant_data$masess = masses
- Use
rowwise
plant_data %>%
rowwise() %>%
mutate(masses = est_mass_type(volumes, plant_types))
- Custom summarizing functions also work with
dplyr
- Need to take a vector as input and return a single value as output